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The unsteady separated flow produced by a finite-core vortex on a plane shear
layer is studied here as a vortex-induced instability. The mechanism of such an
interaction, where the distance between the wall and the vortex is many times the
local boundary layer thickness, is shown here by flow visualization and the solution
of the unsteady Navier–Stokes equation. A new theory is proposed here, which is
generic to the Navier–Stokes equation without any assumptions, that is based on
growth of disturbance energy in time. A dynamical systems approach based on the
proper orthogonal decomposition technique is used to provide a quantitative measure.

1. Introduction
The interaction between a convecting finite-core vortex and an underlying shear

layer is important, as it typifies (a) unsteady flow separation processes (as discussed
in Degani, Walker & Smith 1998; Obabko & Cassel 2002 and references therein)
and (b) flow transition that bypasses the usual linear instability route (Brinckman &
Walker 2001). The idea that a distant vortex can induce a small longitudinal adverse
pressure gradient which destabilizes a wall-bounded flow was postulated first by
Taylor (1936) while studying the dependence of critical Reynolds number upon free-
stream turbulence (FST). Monin & Yaglom (1971) in discussing this work noted that
the change in critical Reynolds number by the small longitudinal adverse pressure
gradient is due to a sequence of unsteady separation, presumably created by a train
of vortices embedded in the FST. The assumption implicit in this scenario is that
the effect is connected with the generation of fluctuations of longitudinal pressure
gradient by these disturbances, leading to the random formation of individual spots
of unstable S-shaped velocity profiles (Monin & Yaglom 1971).

The interaction of a shear layer with a finite-core vortex leading to unsteady
separation was noted by Doligalski, Smith & Walker (1994) as one of the most
important unsolved problems of fluid dynamics. Such unsteady separation is present
in (i) flow past surface-mounted obstacles; (ii) dynamic stall and blade vortex
interaction; (iii) impulsive motion of bluff bodies; (iv) bypass transition and (v) near-
wall turbulence.

The instability mechanism that we provide here by a simplified model experiment
and theory based on the Navier–Stokes equation should also be relevant to the
generation of hairpins in near-wall turbulence (see Smith et al. 1991 and Robinson
1991), which are three-dimensional and more complicated. In Sengupta, Lim &
Chattopadhyay (2001) a vortex with finite core size was created experimentally by
a rotating and translating a circular cylinder whose strength (Γ ), distance from the
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Figure 1. Schematic of the experimental set-up. (a) Side view and (b) top view as seen in the
tunnel. Broken line boundary in (b) indicates the computational domain.

plate (H ) and the circulation sign were controlled accurately. The main emphasis of
the experiment was to control all the relevant parameters so that any observed events
can be reproduced. In figure 1 the schematic of the flow is shown. It was seen that
a slowly convecting vortex, of anticlockwise circulation, creates transition/unsteady
separation ahead of it. The theoretical explanation was based upon the time evolution
of the disturbance energy (Ed), which is governed by

∇2Ed = 2ωm · ωd + ωd · ωd − Vm · ∇ × ωd − V d · ∇ × ωm − V d · ∇ × ωd . (1.1)

In this equation V and ω represent velocity and vorticity fields respectively. The
subscripts m and d refer to mean and disturbance quantities. Disturbance energy
grows when the right-hand side of (1.1) becomes negative. This generic mechanism is
based on the full Navier–Stokes equation without any simplifying assumptions. The
receptivity aspect of the problem was established in Sengupta et al. (2001); here a
detailed computation that includes the leading edge of the plate is reported.

2. An experimental observation of vortex-induced instability
The experiment described in Sengupta et al. (2001) was performed in a recirculating

water tunnel. One of their cases is reproduced here to highlight a receptivity mech-
anism of a shear layer to a convecting vortex in the free stream. In this experiment the
boundary layer was formed on a flat plate, held vertically on its edge in the tunnel. A
coherent bound vortex is created by rotating a circular cylinder of diameter 15 mm,
whose axis was along the spanwise direction of the plate. The cylinder can be rotated
in either direction and was rotated at Ω =5 r.p.s. in the anticlockwise direction, for
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Figure 2. Bypass transition created by a counter-rotating vortex for U∞ = 16.26 cm s−1,
c = 0.154, H = 9 cm and Ω = +5 r.p.s.

the case shown in figure 2. For flow visualization, food dye was released from six dye
ports located 88 mm downstream from the leading edge of the plate.

The Reynolds number based on the diameter of the cylinder and free stream speed
(U∞ = 162 mm s−1) was 2600. The cylinder was convected at c = 0.15U∞, at a height
H = 90 mm. The ratio of surface speed to the relative speed of the free stream and
cylinder was 1.71. The noise level of the water channel is 1% at maximum speed.
It is known (Badr et al. 1990) that a rotating cylinder ceases to shed the coherent
vortices associated with Kármán vortex streets when the surface speed is more than
1.5 times the free-stream speed. In this experiment the bound vortex circulation is
fixed by controlling the rotation rate of the cylinder and this controls the dynamics
of the flow.

In figure 2 flow visualization sequences indicate unsteady separation followed by
bypass transition in frames (b–h). The dye filaments are essentially parallel at the onset
(as in frames a–d), showing overall two-dimensionality during this stage. In frame
(b), the dye filaments released very close to the plate lifted up due to the imposed
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disturbances, with negligible spanwise spreading. The location where unsteadiness
is seen is laminar in the absence of the convecting vortex, indicating the subcritical
nature of the instabilities. Only flow visualization was used, as intrusive measurements
changed the dynamics drastically. Therefore to quantify the experimental observation
we have undertaken a numerical simulation of the problem described next. As we
are interested in the onset stage of the instability, it is sufficient to perform a two-
dimensional simulation of Navier–Stokes equation.

3. Numerical simulation of vortex-induced instability
In the present computations, the Navier–Stokes equation is solved in stream

function–vorticity formulation, as in Brinckman & Walker (2001) and Obabko &
Cassel (2002). Brinckman & Walker (2001) simulated the burst sequence of turbulent
boundary layer excited by streamwise vortices (in the x-direction) for which a stream
function is defined in the (y, z)-plane. Here the vorticity transport equation and the
stream function equation are solved in (x, y)-plane,

∂ω

∂t
+ (V · ∇)ω =

1

Re
∇2ω, (3.1)

∇2ψ = −ω. (3.2)

The non-dimensionalized equations have been obtained with the diameter of the
cylinder as the length scale and the free-stream speed of the oncoming flow as
the velocity scale. From these two scales the time scale is constructed and all the
computational results are in non-dimensional units.

To solve (3.1) and (3.2) in the computational domain of figure 1(b) the parameters
are as given in the previous section except for the strength of the convecting vortex
which cannot be measured and is treated here as the parameter of the problem. For
the present computation this is taken as Γ = 9.1. The Reynolds number based on
displacement thickness of the undisturbed flow at the outflow is 472. Thus the flow is
subcritical in the computational domain.

The domain is given by −1 � x � 25 with a uniformly spaced grid in the streamwise
direction (�x = 0.04) and 0 � y � 1.92 with an arithmetically progressing grid in the
wall normal direction with 141 points, and the wall resolution is given by �ywall =
7.083 × 10−4. In Brinckman & Walker (2001) and Obabko & Cassel (2002), the numer-
ical methods used were O(�x�t, �y�t) accurate. In contrast, the present computa-
tions use high-accuracy compact schemes for spatial discretization as described in
Haras & Ta’asan (1994) and Sengupta, Anuradha & De (2003a), which has more
than seven times higher spectral resolution than second-order-accurate schemes. The
results reported here are grid independent, a coarser mesh having produced the same
results.

At the inflow and the top-lid of the computational domain, one can calculate the
stream function induced by Biot-Savart interaction due to the convecting vortex
outside the computational domain. The wall boundary conditions correspond to no-
slip. At the outflow the fully developed condition on the wall-normal component
of velocity is used. The above conditions are used in equation (3.2) to derive the
vorticity values at all boundary segments. The flow is started impulsively with the
initial location of the vortex being 4D ahead of the leading edge.

In figure 3, identical stream function and vorticity contours are plotted at three
times. As the free-stream vortex convects at a constant height its instantaneous stream-
wise location is shown by an arrowhead. At t = 35 there is a single separation bubble.
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Figure 3. Stream function (top three panels) and vorticity contours at indicated times. Same
contour values have been plotted for each quantity. Arrowheads at the top show the streamwise
location of the convecting vortex.

By t = 55 this bubble suffers multiple interactions with vortices of opposite signs.
These vortices also induce another vortex ahead of this cluster, clearly visible at
t = 70. These bubbles on the wall were conjectured in Monin & Yaglom (1971) to
be a result of buffeting of the shear layer by FST vortices. In the present study no
modelling is required, all the effects are governed by the Navier–Stokes equation. For
example, the primary vortex forms as a consequence of unsteady flow evolution and
does not move at constant speed, unlike that modelled as a Batchelor vortex moving
at constant speed in Obabko & Cassel (2002).

The unsteady separation and vortical structures near the wall are created due to
the effects of the free-stream convecting vortex. A theoretical explanation of this is
provided in Sengupta et al. (2002), where it is shown that shear layers can support
disturbances created by sources inside or outside a shear layer by what is referred to
as wall- and free-stream modes respectively. When free-stream modes are excited, as
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seen here, they in turn cause the wall mode to be excited, by a coupling mechanism
that ensures homogeneous boundary conditions at the wall.

The growth of the primary bubble and appearance of subsequent separation bubbles
are due to an instability where the disturbance field is enriched from the primary flow.
The conditions and mechanism by which these instabilities appear is discussed next.

4. The instability mechanism
The experimental and accompanying computational results display the existence of

a receptivity mechanism inside the shear layer as a consequence of a single vortex
migrating in the free stream at a constant speed. The role of various parameters
responsible for this instability has been discussed in Sengupta et al. (2001). According
to Landahl & Mollo-Christensen (1992) “the turbulent energy equation . . . illustrate
how Reynolds shear stress can do work against the mean velocity shear and transfer
energy from the mean flow to the fluctuating field”. To do this the authors emphasized
that “it is possible to understand such behaviour by studying the redistribution of the
total mechanical energy of the flow” [not just how the ‘energy of perturbation’ given
by the square of the fluctuating velocity changes locally with time]. Hence an equation
for total mechanical energy (E = p/ρ + 1

2
V 2) is first derived. For incompressible flows

this is obtained by taking the divergence of the rotational form of the Navier–Stokes
equation given by

∇2E = ω2 − V · ∇ × ω. (4.1)

Thus the total mechanical energy is directly related to rotationality of the flow. It
is not necessary to solve this equation to describe the flow instability, because in (4.1)
the sign of the right-hand side indicates the presence of a source or a sink of E, is
given by the property of the Poisson equation (Sommerfeld 1949). A negative sign
signifies a local source. The vorticity field stabilizes E as shown in (4.1). However,
the disturbance energy can grow via the vorticity product term of (1.1) when primary
and disturbance vorticities are of opposite sign indicating a transfer of energy from
primary to disturbance flow. At the same time, the second term of (4.1) indicates that
the spatial variation of the vorticity field can interact with the velocity field to cause
instability when the overall contribution is a negative quantity.

For example, for two-dimensional flows,

V · (∇ × ω) = u
∂ωz

∂y
− v

∂ωz

∂x
. (4.2)

where u and v are the x- and y-components of the velocity field. In (4.2) the first
term dominates in the initial stages of the instability.

If one divides E into a mean and a disturbance part, E = Em + εEd , and substitutes
in (4.1), the disturbance energy equation given by (1.1) results. The corresponding
linearized equation is

∇2Ed = 2ωm · ωd − Vm · ∇ × ωd − V d · ∇ × ωm, (4.3)

which can be used to describe the onset of instability, when a suitable mean field
exists. In Sengupta et al. (2003b) this method is used to explain the limiting mechanism
for lift generation associated with the Magnus–Robins effect. However, here (1.1) has
been used to explain the complete nonlinear evolution of disturbances.

Here the velocity and vorticity fields at t = 20 are taken as representative un-
disturbed flow. The sign of right-hand side being positive or negative indicates a sink
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Figure 4. Contours of the right-hand side of the disturbance energy equation (1.1). Only the
negative contours – indicating an energy source – are plotted.

or source respectively. Hence for the disturbance energy equations (1.1) or (4.3) a
negative right-hand side anywhere would indicate a disturbance energy source at that
point in the flow field. In figure 4, these distributed sources are plotted as negative
contours, as given by (1.1). At t =40, there are two sites from where instability
originates – one at the leading edge and the other downstream. It is seen that the
leading-edge instability is the weaker of the two and the major one originates near
x = 6, as was also seen in figure 3. Vortical structures from these two regions interact
as is evident at t = 55 onwards, from figures 3 and 4, where the spike forming at the
downstream site is inhibited by the vortical structure originating from the leading
edge.

In stream function and vorticity contour plots the spike is evident at x =12 at
t = 55 in the form of a secondary bubble. It is therefore important to include the
leading edge in the analysis, otherwise one would compute the unimpeded spike
stage, as in Peridier, Smith & Walker (1991) and Obabko & Cassel (2002). However,
beyond t =55, the instability originating from the leading edge terminates before
the downstream spike and subsequently the distance between the instabilities further
increases. The present analysis based on the right-hand side of (1.1) more clearly
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Figure 5. (a) Sum of a specific number of eigenvalues divided by total sum, indicating energy
content. Dashed line marks 99% level. (b) The first two eigenvectors of vorticity disturbance
in the indicated time ranges.

reveals the physical nature of the problem compared to the information from stream
function and vorticity contours.

5. Characterizing coherent structures by POD
To visualize the coherent structures a proper orthogonal decomposition (POD)

analysis is pursued next following Sirovich (1987) and Holmes, Lumley & Berkooz
(1996). To hande numerical data over a large domain by POD, the method of snapshots
by Sirovich (1987) is most appropriate, in particular if the number of input frames
or snapshots is smaller than (Nx × Ny) – the product of numbers of grid points in
the coordinate directions. In the present study, 21 frames have been used over time
spans of 10 for performing POD. In figure 5, the eigenmodes for vorticity data over
the indicated time spans are presented. The leading eigenmodes at early times clearly
show two regions of sharp vorticity gradients: one starting from the leading edge
(x =0) that remains invariant with time and the other emerging from downstream
and representing downstream convection of large coherent structures.
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This reinforces similar observations on figure 4. The terms of (4.2) contribute most
where the vorticity contour lines are concentrated in space, indicating steep local
gradients. The presence of a larger streamwise velocity component at the upper tier
of vorticity variation would allow the instabilities to intensify more than in the lower
tier by the mechanism of the terms in (4.1) and (4.2). The eigenvector 1 carries
information on the instabilities experienced at the leading edge and the downstream
site and the eigenvector 2, in contrast, only carries information from the downstream
site. Also there is a qualitative difference in the eigenvector 1 between the first and
second time interval. In the first interval the coherent structures erupt vertically,
while in the later interval it shows an upstream bias. The relative importance of the
eigenmodes at different time intervals can be gauged from the fraction of the total
fluctuation energy contained in a specific number of leading eigenmodes and is shown
in figure 5(a). The fractional energy content is given by the sum of the eigenvalues
divided by their total sum. Up till around t = 50, five eigenmodes capture 99% of the
total disturbance energy. This number increases to 18 during t = 60 to 70. It has been
noted by Rajaee, Karlsson & Sirovich (1994) that this analysis method can provide
insight into flow evolution at other parameter values from these eigenmodes.

Different cases have been simulated with different Reynolds numbers and strength
of convecting vortex- (not shown here), which distinctly show the basic instability
mechanism, though the details vary with these parameters.

6. Summary
The results of a receptivity study are reported here for an instability created on

a flat-plate shear layer by a finite-core vortex convecting outside the shear layer.
In the experimental study it is shown that a vortex with positive circulation creates
instability ahead of it. Numerical simulation is performed for a case similar to the
experiment. The coupling between the convecting vortex outside the shear layer and
the generated unsteady vortical field inside is explained theoretically by developing an
equation for the total mechanical energy. Finally, the unsteady vortical field created
in the computation is analysed by proper orthogonal decomposition, which supports
the proposed mechanism.
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